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Background

Challenges in multiphase turbulence modeling

mesoscalell

Particle-scale

Model free @ DNS —0O(10%) particles
Does not capture
mesoscale dynamics (e.g.
clustering, bubbling)
© Euler-Lagrange

O(108) particles

LES (Euler-Euler) @

RANS &
Industrial-scale

Predictive models must
be tractable and robust

across flow l'egimes.

macroscalell]

[1] Tenneti and Subramaniam (2014)




Background

Objectives and outline

Objective: Develop accurate and predictive multiphase
turbulence models that capture relevant physics across scales.

Agenda:
e Canonical flow to isolate 2-way coupling in turbulence
» Fully-developed cluster induced turbulence (CIT)
» Numerical framework for generating data
» Shortcomings of existing closure models
® The role of machine learning in turbulence modeling
® Sparse identification
» Application to single-phase turbulence
» Application to fully-developed CIT

® Looking ahead
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Objectives and outline

Agenda:
e Canonical flow to isolate 2-way coupling in turbulence

» Fully-developed cluster induced turbulence (CIT)
» Numerical framework for generating data
» Shortcomings of existing closure models
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Fully developed CIT

Fully-developed, cluster-induced turbulence ' °

® Requires a mean velocity difference between phases
(e.g. body forces (gravity), inlet conditions)

Pp {ap) >
pr (af) =

® Spontaneous cluster formation

® Mass loading ¢ =

2
» Characteristic timescale 7, = Z—‘; 18,24

» Terminal velocity V = 7,8
vds
vf

» Particle Reynolds number Rep =
» Cluster size £ = ng > dp
® Fluctuations in o) can generate and sustain
fluid-phase turbulence (fully-developed CIT) We consider the most
® In the absence of mean shear, turbulent kinetic simplified two-way
energy is produced by two-way coupling through coupled flow.

drag (Drag Production).

[1] J. Capecelatro et al. (2014), J. Fluid Mech., [2] Agrawal, Sundaresan, et al. (2001), J.
Fluid Mech.
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Fully devel

Eulerian-Lagrangian solution of mesoscale equations

* NGA3?
» Finite volume DNS/LES code
» Conservation of mass, momentum and 7 % %

kinetic energy
Interphase momentum exchange

daru 1 1
7(?( L4V @up = ——Vpr+ —V 07— arpA+arg
ot PF P

® Lagrangian particle tracking?
» Newton’s 2nd law for particle position and

velocity
» 2nd-order Runge-Kutta for particle ODEs

»  Soft-sphere collision model

® Interphase exchange

» Particle volume fraction and
momentum transferred to fluid

» Fully conservative and consistent F "
filtering approach*

» Transferred data converges under

mesh refinement

[3] Desjardins et al. (2008) [4] Capecelatro et al. (2013)




Fully developed CIT

Simulation results

<
o Mesh: 512x512 (896d, x 896d,)
gg 2 o N, = (12,359 57,362 266,278)
o Enforce mass flow rate = 0




Fully developed CIT
RANS equations for fully-developed CIT

Phase-averaging of the mesoscale equations allow us to arrive at
the RANS equations for fully-developed CIT.5 ©
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Fully developed CIT

RANS equations for fully-developed CIT

/"2
}8 (uf"™)f
2 Ot
"
Ug = urf — <Uf>f
fluctuations in fluid velocity
fluid-phase averaged < > . <Oéf ur >

fluid velocity \/ . <a f>

<u?/2> f ‘\/ﬂuid—phase Reynolds-Stress
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Fully developed CIT

RANS equations for fully-developed CIT

1 ouy ouy
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PS VD

Fluid-phase Pressure Strain & Viscous Dissipation

e Present in single-phase flows.

e PS produces TKE in the horizontal direction due to weak
reorientation of vertical to horizontal Reynolds stress.

e VD dissipates TKE to heat

e Of xi is the viscous stress tensor.




Fully developed CIT

RANS equations for fully-developed CIT

Drag Production

e Source of fluid-phase TKE
e Only present in coupled flows and in the gravity-aligned direction.
e In the absence of clustering, particles are uncorrelated and <u}”) p=0.

particle-phase average <( . ) > _ <O‘ P( i ) >
—r P (ap)

< u///> & fluid velocity fluctuation

frp seen by the particles

+ 24l plup)p




Fully developed CIT

RANS equations for fully-developed CIT

+ (e — (uf?))
Tp

DE

Fluid-phase Drag Exchange

v
(uf'u b )p fluid-particle covariance

¥~ seen by the particles DE partitions TKE
a— between fluid and
h mass loading

T particle phases.
W characteristic time scale




Fully developed

RANS equations for fully-developed CIT

Pressure and Viscous Exchange
o Since the particle-to-fluid density ratio is large, these terms
are often neglected.
. P:c is the fluid pressure fluctuation
0 ;r is the viscous stress fluctuation

/
® S opy N Oo'f.,xi
Pp Fox p Fox




Fully developed CIT

Existing closure models

Unclosed terms are typically modeled by extension from single-phase
flow?
Pressure Strain & Viscous Dissipation:

1 A oul\\ _ A
; <<Pfax> - <Uf,xzaxi>> = _CRfkT (<Uf >f - kf) —E&f

[4] Fox, R. (2014); Capecelatro et al. (2015)
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Fully developed CIT

Existing closure models

Unclosed terms are typically modeled by extension from single-phase
flow?

Drag Exchange:
2 ((u'up)o = Wf)5) = = (Bpalur 126,22 = Braluy )
[2 P

[4] Fox, R. (2014); Capecelatro et al. (2015)
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Fully developed CIT

Existing closure models

Unclosed terms are typically modeled by extension from single-phase
flow?

Drag Production:

14
<U;/f//>p<“p>p = Cg<“p>,2;
p p
11
where C; = (ur)p




Fully developed CIT

Existing closure models

Unclosed terms are typically modeled by extension from single-phase
flow?

Pressure and Viscous Exchange Terms are assumed to be negligible.

[4] Fox, R. (2014); Capecelatro et al. (2015)
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Fully developed CIT

Existing closures fail to be predictive
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Background  Fully developed CIT  Sparse Identification = Looking ahead

Closures adapted from
single-phase break down for

even the most simplified
two-way coupled flows

Can machine learning provide a
tractable closure?

MichiganEngineering 2018 NETL Workshop, Houston TX | 18



Sparse Identification

Machine learning in CFD

Neural Networks® and Sparse Regression®

in data-driven turbulence modeling.

are key players

Neural Networks Sparse Regression
]
Benefits Benefits
e Complete generality ¢ Compact, algebraic form
® Requires no prior ® Model selection and
knowledge of underlying regression
physics e Easily incorporated into
Drawbacks CFD solvers
e Difficult to express in Drawbacks

compact form ® Relies on modeler to

select appropriate test

functions
[5] Duraysami et al (2018) [6] Brunton et al (2016)
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Sparse Identification

Sparse identification

Generate trusted data

We define the sparse model as

i
'

y= X ﬂ . B
Use trusted data to
assemble Y and X.

Determining the optimal
coefficient matrix is cast as a
sparse minimization problem !

Data we desire to model Matrix of test functions

regression sparcity Compute minimum f,
kfor given A
Update A.

Demonstrated success for classical, dynamic systems (e.g. the Lorenz attractor).6

Can this technique be applied successfully to realistic flows?

[6] Brunton et al (2016)




Sparse Identific

Sparse identification

® Sparse Identification

» Application to single-phase turbulence




Sparse

entification

Sparse Regression method applied to synthetic data

Generate Trusted Data

2
dt<u,uj> =Pj+Rj— 3%

LRR-IP Model

—

Case (1)
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Sparse Identification

Sparse identification correctly returns the LRR-IP model
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Sparse Identification

DNS-generated shear turbulence

Generate Trusted Data

d, 2 |
() = Py + Ry — 25, ;i

dt 3

Case (1)
Reynolds-Stresses

DNS simulations

(grid size: 1024x512x512)

Prescribed S




DNS-generated homogeneous shear turbulence

Discovered sparse identification model

Equation € 7 (uu) Z (w) 7 (ww) 7 (uv) S (uu) S{w) S{(ww) S(uv)

RYGR-TP 2¢r —Cr 0 0 0 0 0 0 -ic
R}“‘”‘ 4332 -20.07 0 -48.98  -20.36 0 -1.95 2.03 3.04

RIER-TP 0 0 —Cr 0 0 —G 0

RSIMR 10.38 -6.37 0 -2.70 8.74 0 0.65 0 -0.45
LRR P

R3 2¢r 0 0 —Cr 0 0 2.

RSI“R -5.09 3.38 0 -4.99 -17.51 0 0.42 0 0.41
LRR P

Ry 2¢r 0 0 —Cr 0 0 2c

an\“‘ -11.17 8.12 0 414 -21.29 0 0.81 0 0.99

[7] Pope, S. (2012) Cambridge Univ. P

LLR-IP model”

€ 2 2
Rij = —CR; ((u,uj) - gk(SU) -G (’PU - 3775”)

with typical values Cg = 1.8 and G, = 3/5.

‘R33z =4

Model identified by sparse identification

Rii = 28% ({uu) +5/3(vv) — 0.7(uv) — 1.9k) — 25(wv) + 25{ww) + 35(uv)
Ria = 27% (—1.4(uu) + (w) + 3.2(uv) + 1.9k) + 0.65(w) — 0.45 ()
Ra2 = 5= (1.67(uu) + (vwv) — 3.5(uv) — 3k) — 0.45(vv) + 0.45(uv)

(3(uu) + (w) — 5(uv) — 4.7k) — 0.85(wv) + S(uv)

x| ™ x| 0




Sparse Identification

DNS-generated homogeneous shear turbulence

Sparse identification model out performs LRR-IP model

I I I I I I - —150 & . I I I I |

0 5 10 15 20 25 0 10 20 30 40
St St
S=15 S=27
||[EMERIP] | = 0.551 ||ELRRAP] = 0.523
||[ESR||o = 0.106 ||[ESR||o = 0.107
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Sparse Identification

Sparse identification

e Sparse Identification

» Application to fully-developed CIT

ngineering



Sparse Identification

Sparse identification of fully-developed CIT

We group the unclosed terms and conduct sparse identification

for the four terms using highly-resolved data generated using
NGA.

(1]
1 6<U;://2>f 1 ouy’ ouy’
5 = —| (pr —(Ofxim -
2 Ot f Ox Ox;

PS VD
Q2 (- i)

ug u u
Tp f%p f
DE o
/
9 P om 2 ,,,6p} ///aaf.)a
+ —(u Up)p+— u — '
£ )oluels p(<fax (e
~——— \ , p
DP PE v

MichiganEngineering

op, Houston TX |

%B



Sparse Identification

Sparse identification of fully-developed CIT

1 ouf’ ouf’ 11y
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PS VD
Exact expression Existing Closure
Closure Discovered by Sparse Regression
€
= 1155wy + (0 004(v/"2) + (0.02Re, + 0.14(cr,) — 0.02) (u ”’2>)
kf Tp
1
+£ ((o 06Re, + 0.05) (ul?)p — 0.13(v)?), )70.13/?@,] (uf?)3 ()2
Tp Tp
Existing Model Error Sparse identification Error
(ap) (ap)
0.001  0.01 0.1 0.001 0.01 0.1
L 01 0.66 0.83  0.89 0.1 | 0.7x10~ ™ 0.3x1071F  0.1x107
¢ 03] 053 0.92  0.97 ¢ 0.3 | 07x107  o0ax107!  0.1x107M
1.0 | 077 092 0.98 1.0 | 03x10-14  01x10-14  01x10-14




Background  Fully developed CIT Sparse Identification =~ Looking ahead

Sparse Identification uncovers

complex dependencies on flow
conditions that improve model
accuracy.

MichiganEngineering 2018 NETL Workshop, Houston TX | 30



Looking ahe

Looking ahead

3. Mixed 4. Application

penalties for to more

l) - 1 " o .
Predictive increased model complicated
le training
robustness flows

(wall-bounded)

dependent CIT
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Looking ah

DNS-generated homogeneous shear turbulence

Comparison of models in the context of the Reynolds-stress
equations

(uiu;)/k
(uiu;)/k




Looking ah

Sparse identification of fully-developed CIT

™ <<u/f/lu">p (u ’//2>p) = i (‘prJ( ;/2>1/2<U/p/2>;17/2 B 1< "o >f>

DE

Exact expression Existing Closure

Closure Discovered by SparseARegression

- 9.1%<u;”2> . ((o.s +1.9(ap) + 0.05Re,){(uy 2) + 0.1(v;”2>)
f Tp

” ) 1 i
e ((0.670‘05/?%)( %), —0.5(v,2) )7044Repi(ulf"2)i<ug2>§
Tp Tp
Existing Model Error Sparse Identification Error
(ap) (ap)
0.001  0.01 0.1 0.001 0.01 0.1
L 01 0.24 0.05 1.23 0.1 | 0.6x10~ ™ 0.2x10-1F  0.2x107
¢ 03| 072 0.21  0.32 € 0.3 | 49x107  02x107  0.4x10714
1.0 | 035 025 024 1.0 | 04x1071  0.8x107!%  0.5x10714




Looking ahead

Sparse identification of fully-developed CIT

Poom 2
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Exact expression Existing Closure

Closure Discovered by Sparse Regression
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Tp Tp
Existing Model Error Sparse Identification Error
(ap) (ap)
0.001 0.01 0.1 0.001 0.01 0.1
. 01 0.98 0.98  0.96 . 01 1.5x10- % 0.2x10~ 1% 0.04x10~ 1%
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1.0 | 107 086 0.96 1.0 | 0.3x1071%  0.2x10714  0.02x10"14




Looking ahead

Homogeneous shear turbulence

The exact Reynolds-Stress equations for shear turbulence’ are

d 2
a(u;uj) = PU + R,‘j - g&éu

where
® P;i — production of TKE
® Rj — pressure rate-of-strain (redistribution of TKE)
® ¢ — dissipation of TKE

and unclosed terms are R;; and ¢.

[7] Pope, S. (2012)
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Looking ahead

Homogeneous shear turbulence

A widely accepted closure for the pressures rate-of-strain term,
is the LLR-IP model”

2 2
Rij = —CR% <<Uiuj> - 3/‘50') -G (P’j a 3736’7)

with typical values Cg = 1.8 and G, = 3/5.

[7] Pope, S. (2012)

Engineering
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